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Abstract 

An MTF-based optimization method is described that can extract maximum spectral and spatial uniformity 
of response from compact pushbroom imaging spectrometer designs. Such uniformity is essential in 
extracting accurate spectroscopic information from a pushbroom sensor in Earth-observing remote sensing 
applications. Two simple and compact spectrometer design examples are described that can satisfy 
stringent uniformity specifications. 

1. Introduction 

There is increasing interest in remote sensing of the Earth from space for monitoring of natural resources, 
mineral exploration, hazard remediation, and several other applications. Hyperspectral imaging 
spectroscopy‘ is one of the main means of filling that need, and pushbroom sensors offer the signal-to-noise 
performance that is required for orbiting platforms. However, such sensors do not easily yield high quality 
spectroscopic data. This means that the recovered spectrum of any ground feature from a pushbroom sensor 
can potentially contain substantial artifacts that compromise identification of its chemical composition. 
Further, pushbroom spectrometer artifacts can cause pixel classification algorithms to fail by producing 
many non-physical spectral signatures. 

The detailed justification of how these errors arise as well as their effects on the recovery of information 
from remotely sensed data is beyond the scope of this paper, but has been given in refs. (2,3). Here we 
concentrate on how the spectrometer optical design can help alleviate the errors. 

2. Sources of data artifacts in pushbroom  imaging  spectrometers 

It is instructive to consider first a whiskbroom sensor, since this  type can achieve the highest theoretical 
data quality in principle. Whiskbroom sensors are  more appropriate for airborne rather than orbiting 
platforms, since they cannot easily provide adequate signal-to-noise performance from orbit due to the 
limited integration time. However, a whiskbroom sensor records the spectrum of every point on the  ground 
on a single linear photodetector array. Hence careful calibration of the response of each individual detector 
element suffices to eliminate most artifacts. This process has been tested in practice, using what is perhaps 
the single most successful hyperspectral imaging spectrometer, AVIRIS4,’ which is operated from various 
airplane platforms. 

Consider first the spectral calibration procedure. For a whiskbroom sensor such as AVIRIS, it consists of 
accurate measurement of the spectral response function (SW) of each pixel.6 For AVIRIS, it has been 
determined experimentally that the S W  of all pixels is closely approximated by a Gaussian, and can thus 
be characterized by the location of its maximum and its halfwidth (full width at half-maximum). These two 
parameters must be known very accurately; an estimate of 1% error in the center location and 2% error in 
the halfwidth have been identified as desirable for producing data substantially free from spectral artifacts.’ 

Consider now a pushbroom sensor. The slit is dispersed and imaged on  an area array, the columns of which 
are considered here parallel to  the slit, with the rows thus providing the spectral information. Each row is 
effectively an independent spectrometer. Thus if a pushbroom sensor is to produce data of the same quality 
as a whiskbroom one, the SRF of every pixel must be calibrated to the same 1-2% accuracy mentioned 



above. That of course is not practical, as it would multiply the already demanding whiskbroom calibration 
procedure by the number of spatial pixels (typically several hundred). But even if it were somehow possible 
to perform the above calibration, there would still be a problem with the recovery of the information, since 
a correction algorithm would have to be applied to every pixel, thus increasing computational complexity 
beyond reasonable limits. It is therefore desirable to  have the same spectral calibration for all rows of the 
array. 

There are, however, additional problems with pushbroom systems that relate to the spatial direction. These 
have mostly to do with spatial uniformity and cross-contamination of the spectra between adjacent spatial 
pixels. It is easiest to appreciate these errors with the help  of a pictorial representation. Figure 1 shows the 
ideal spectrum that a pushbroom imaging spectrometer must produce. The columns labeled “B”, “G”, and 
“R’ represent the short, middle, and  long wavelength images of the slit respectively. The filled circles or 
ellipses represent idealized optical point spread functions (PSFs). 

The following desirable optical characteristics are evident from the figure. All spectra are perfectly parallel 
between them and with the rows of the array. Similarly, the monochromatic slit image for any wavelength 
is perfectly straight and aligned with a column. In other words, the centroids of the PSFs form a perfect 
rectangle. This means that distortion in both the spectral and spatial directions must be absent. Further, the 
width of the PSF (a or b) along  any column also remains constant, though it is allowed to vary with 
wavelength. Finally, the height of the PSF (indicated by  c) should remain constant, independent of 
wavelength, and also independent of spatial location. 

In practice, these conditions can only be satisfied approximately. A non-ideal spectrum that contains all 
possible errors is shown in Fig. 2. The figure shows the following errors. 

The “B” column exhibits a distortion that is called “smile”. This error will affect knowledge of the 
location of the peak of the SRF of a pixel. 
The “G’ column shows variation in the width  of the PSF with spatial location. This error will affect 
knowledge of the halfwidth or shape of the spectral response function. 
The top row is not aligned with the array, and  when compared with the middle one, it shows that the 
spectrum is more like a trapezoid than a rectangle. T h s  is called “keystone error”; it causes 
contamination of spectra from adjacent pixels in boundary regions or for objects that are only a few 
pixels wide. 

diffraction). Although this may be inevitable in a diffraction-limited system, it nevertheless causes a 
spatial nonuniformity similar to the keystone error. 

The bottom row shows a PSF that increases in height with wavelength (as might be caused by 

The tolerance for all the above errors is at the level of a small fraction of a pixel. The desirable level of 
control for the first two errors is <- 2% and for the last two < -5% of a pixel.3 

It is evident that these requirements are rather demanding. However, the recovered data quality will depend 
on the extent to which they are satisfied. Hence a pushbroom imaging spectrometer design procedure 
should take them into account. This should be done preferably at the optimization stage, and some merit 
function recommendations are provided within this paper. But in any case, the performance assessment of a 
design in terms of the above errors should be an integral part of imaging spectrometer design evaluation, as 
shown in the following sections. 

3. Computation and optimization of optical requirements 

This section shows how the requirements put forth in Sec. 2 can be computed and translated into terms 
appropriate for incorporation into a merit function. 

3.1. Smile  and  keystone 

Minimization of smile and keystone is the simplest requirement to quantify and insert into the merit 
function. The chief rays from two or three points in the field are selected for three wavelengths spanning 



the desired spectral range. The intersections of these rays with the image plane are noted and their 
differences in x or y coordinates are then set to zero with an appropriate weighting factor. In order to 
calculate the exact amount of smile or keystone one must consider not the chief ray intersections but the 
PSF centroid locations. There is, in general, a difference between the two, which however diminishes as the 
level of distortion and aberration decreases. The chief ray intersection is computed much faster than the 
centroid which requires many rays and its use has been found perfectly adequate in reducing smile and 
keystone (as computed through the centroids) to practically undetectable levels.’ 

A slight wrinkle to  the above procedure appears when the PSF is strongly asymmetric, leading to an 
asymmetric SRF. In that case, the SRF cannot be described through the peak value (or mode) and halfwidth 
(or variance) alone. Additional moments may be needed (median, skewness, etc.). If, in other words, the 
SRF changes shape considerably as a function of the field position by becoming asymmetric, the definition 
of smile becomes problematic. For the functions of interest, the location of the centroid of the PSF still 
predicts the median (but not mode) value  of  the SRF. In any case, by reducing the SRF variation with field 
position, as in the following section, this concern is mitigated. 

3.2. SRF variation with field position 

The SRF is the convolution of the slit image with the pixel response function, where the latter is simply 
assumed to be a rect function. This assumption may not be  correct,’ but in the absence of detailed 
information it provides a starting point. The slit image is itself a convolution of the slit (a rect function) and 
the optical line spread function (LSF) in the tangential direction. Typically, the slit is of the same width  as 
the pixel, say yo. Thus we have 

SRF = rect(yo) 0 LSFT 0 rect(yo) (1) 

where 0 denotes convolution. If LSFT is narrow compared to the pixel or slit width then the SRF resembles 
a triangle function of halfwidth -yo. Otherwise, if the LSF size is comparable to the pixel, the SRF begins 
to resemble a Gaussian with a halfwidth broader than yo. 

In practice, the SRF is measured by illuminating the spectrometer with monochromatic light and varying 
the wavelength while recording the output of the pixel under test. The image of the slit thus shifts along the 
pixel, giving a function that peaks when the middle of the slit image coincides with the middle of the pixel. 
In order to represent this experimental procedure by Eq. (l), the assumption must be made that the LSF is 
approximately independent of wavelength, an assumption that can be taken as valid over the restricted 
wavelength range that excites any one pixel. However, globally the LSF is a non-trivial function of 
wavelength. 

In the Fourier domain, the convolutions become multiplications. The Fourier transform of the SRF may be 
thought of as a form of spectral MTF,’ and hence is denoted as SMTF. Thus (1) becomes 

SMTF = MTFT ’ sinc2( l/yo) (2) 

where MTFT the tangential MTF of  the spectrometer, defined here to coincide with the (spatial) MTF along 
the spectral direction. Equation (1) is used in order to compute the SRF for design evaluation purposes. 
However, Eq. (1) is not suited for  use during design optimization, as the computations inherent in it would 
slow down the optimization considerably. Specifically, an operand relating to the extent (or integrated 
energy) of the LSF would  have  to be devised (spot or ray-based operands are a poor substitute for near 
diffraction-limited systems). If the optical design software offers such an operand, it may be advantageous 
to use it. But it is more likely that one will have to resort to Eq. (2), which shows that we can use MTF- 
based operands, offered by practically every advanced design program. Specifically, we can demand that 
the tangential MTF remains approximately constant independent of field position, for a spatial frequency 
up  to l/yo that def ies  the first zero of the sinc’ function. 



3.3. PSF variation with wavelength 

The last constraint expressed in figures 1 ,2  is the minimization of the variation of the PSF height as a 
function of wavelength, which provides a uniform spatial response function. The spatial response function 
(SiRF) along the spatial direction (length of slit) is simply the convolution of the pixel with the sagittal 
LSF. 

SiRF = rect(xo) 0 LSFs (3 )  

In the Fourier domain, the spatial response function becomes the spectrometer spatial transfer function 
(SSTF). So (3) is written as 

SSTF = MTFs ' sinc( l / ~ )  (4) 

showing again that we can use the MTF up  to a fixed frequency for optimization purposes. It should be 
appreciated that the ideal spectrum shown in Fig. 1 applies to imaging from orbit. The wavelength- 
dependent scattering of the atmosphere modifies the SiRF or SSTF. Generally, the 'blue' end will suffer 
from more scattering and hence broadening of the LSF. This means that even if one measures the ideal 
spectrum of Fig. 1 during ground calibration, the spectrometer will behave differently once in orbit. 
Conceptually, the inclusion of the atmospheric effect provides no difficulty. We can simply multiply the 
right hand side of (4) by the atmospheric MTF. 

In practice, MTFA is variable and can only be predicted within broad limits, which means that one can only 
optimize to a mean expected response. Atmospheric MTF measurements have been performed at ground 
level," but we know of no measurements of the down-looking atmospheric MTF through the range of 
wavelengths that is of interest here. If, however, such measurements become available they can  be 
incorporated in the design procedure through Eq. (5). 

The effect of the atmosphere is more critical at short wavelengths. In the solar reflected portion of the 
spectrum the interaction between upwelling radiance and the atmosphere takes the form of absorption and 
scattering. Water vapor, carbon dioxide, oxygen, methane, and ozone are the primary molecules that absorb 
solar energy in the atmosphere. Both the molecules and aerosols of the atmosphere are responsible for 
scattering radiance. The upwelling spectral radiance reaching an imaging spectrometer can be separated 
into two primary components: (1) the energy that has been reflected by the surface, (2) and the energy that 
has been scattered by the atmosphere into the observation direction of the sensor. Figure 3 shows the 
relative contribution of these two components. It can be seen that the proportion of scattered energy 
decreases from 400 nm to 1000 nm, and is negligible thereafter. The scattered energy has the effect of 
broadening the spatial response function, but the main problem is not the broadening by itself, but the 
wavelength dependence of the effect, which affects the spatial response uniformity. 

It is noted here that the atmospheric MTF will affect the response function in the spectral direction (and 
thus on the SRF) as well as the spatial direction. This is generally not a problem since one can expect that it 
will have a similar effect on all SRF's. However, this assumption may be violated in systems with a very 
wide field of view, in which case the atmospheric effect may vary as a function of field position. 

Minimizing the change in SiRF with wavelength is equivalent to minimizing the sagittal LSF variation, and 
may be expressed as 

It is fortunate that physics works in our favor here, since at the short wavelength end the LSF (or PSF) 
tends to be degraded by aberrations, while at the long wavelength end diffraction is typically dominant. 
Thus one has to seek a balance between these two effects. In practice, this may mean that we accept worse 
image quality at the short wavelength end than the spectrometer is capable or providing, but the reduction 



in image quality is more than balanced by the improvement in the spatiaVspectra1 uniformity. Equation (6 )  
should be understood as applying to the LSF from orbit and thus containing the effects of the atmosphere as 
well. 

Condition (6 )  is in fact physically impossible to satisfy in that strict form. However, we can approximate 
that condition by following the reasoning of the previous section and using MTF-based operands in the 
merit function. Thus we attempt to equalize the two MTFs up to the frequency l/xo. From Eq. (5), 

wheref; can be taken as two spatial frequencies, l/xo and 1/2x0. Equation (7) is empirical, rather than strict. 
Limiting the integral over one pixel (or the MTF up  to  the frequency l/xo) is somewhat arbitrary, but it 
suffices in practice to ensure that the undesired variation is minimized. If the atmospheric MTF cannot be 
estimated in a satisfactory way,  one  may at least partly account for it by assigning weak weighting factors 
in the merit function operands relating to Eq. (7). This will generally result in a LSF that increases slightly 
with wavelength. Equation 7 needs to be applied to several different field positions. In practice, it has been 
found sufficient to use three appropriately selected field positions. 

As explained earlier, the effect of the atmosphere becomes negligible for wavelengths longer than about 
1000 nm, in which case we can take MTFA(h1,f;) = MTFA(h2,JD in Eq. 7. However, the method of 
optimization shown here is independent of that assumption, which in any case does not hold for shorter 
wavelengths. If the atmospheric effect is strongly nonlinear with wavelength (e.g. Rayleigh scattering) then 
using  two wavelengths only, as implied by Eq. 7, is in principle inadequate. Three wavelengths would 
suffice to represent even strongly nonlinear cases. However, in practice it is probably adequate to use  two 
wavelengths only, since the optical design will be able to satisfy any condition similar to (7) only 
approximately. In any case, the evaluation of the resulting design can always show if a satisfactory solution 
has been obtained. 

There remains one requirement that has not been addressed yet: that the height of the PSF ('c'  in Fig. 1) 
remains constant, independent of field. If that condition can be satisfied, then the spectrometer will have the 
maximum degree of spatial uniformity. However, the condition is difficult to quantify since the height c is 
not completely independent of wavelength. In the optimization method adopted here, this condition is not 
evaluated explicitly, but it has been found in practice that the residual variation with field of the PSF height 
is similar in magnitude to  the residual variation with wavelength, when an attempt has been made to  reduce 
the latter. 

The optical design may lack enough degrees of freedom to satisfy all conditions described in sections 3.1- 
3.3. Nevertheless, by inserting the conditions into the merit function one may seek an appropriate balance 
between them. We may also note that the significance of the keystone error and of the LSF variation with 
wavelength is lessened if a relatively unstructured field is imaged. An example of such an application is 
ocean monitoring. In that case, minimization of smile and of the SRF variation should be the prime goals of 
the design. However, for typical land applications sharp borders and small targets are common, in which 
case all the above conditions need be considered. 

4. Optical design examples 

Progress in spectrometer design has resulted in the development of concentric spectrometer forms, which 
are noted for their simplicity and compactness. These forms achieve their desirable characteristics by 
placing the grating on a spherical surface within a nominally concentric reflecting or catadioptric system.'" 

They also can achieve very low distortion values because of their symmetric form." The full potential of 
these spectrometers is now being tapped thanks  to recent improvements in techniques for manufacturing 
high-quality blazed gratings on the curved surface. l9 Within the context of this work, we undertook to 
evaluate concentric spectrometer forms for their ability to satisfy all the requirements for spatial and 
spectral uniformity described in the previous sections. 
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These designs have only a limited number of degrees of freedom. As it will be seen, however, they can  be 
made to satisfy stringent requirements while employing only two spherical surfaces. In practice, one trades 
a little image quality to gain uniformity of response. This trade is demonstrated by comparing between two 
versions of the same spectrometer: one that has been optimized for distortion and image quality only, and 
one  that  has been optimized for uniformity of response in addition to distortion and image quality. For the 
examples shown below, we have specifically chosen not to increase the number of optimization variables 
even as we impose additional requirements for uniformity. Of course, depending on the specifications of a 
specific desired system, one may have to use additional variables such as aspherizing or tilting various 
surfaces, employing some aberration correction or balancing in the grating, and so on. None of these 
variables were used here. The designs have only spherical surfaces with a common axis. 

For brevity, a spectrometer covering the 1000-2500 nm range is presented only. Normally, another module 
covering the 400-1000 nm range would also be required in order to cover the entire spectral range of 
interest in typical Earth-looking hyperspectral remote sensing applications. Our aim is to demonstrate the 
application of the method rather than produce final designs. For this reason we can also ignore any effects 
arising from the front light collection optics, since the actual optical system is transparent to the 
optimization method (in practice of course, the front optic cannot be ignored insofar as it may cause a non- 
uniform change of the PSF with field or wavelength). Similarly, atmospheric effects can be included once a 
reliable mean atmospheric MTF is known without any changes in the method but only perhaps in the 
weighting factors assigned to the various merit function operands. 

The f is t  example is an Offner spectrometer, shown in Fig. 4. This spectrometer has a nominal resolution of 
10 nm (150 spectral pixels), and 720 spatial pixels of 27 pm square size. The f-number is 4. The two 
differently optimized versions of the spectrometer look identical at this level of accuracy. Both versions 
have negligible smile (-4%) and keystone (<2%). The ensquared energy in the pixel is >79% for both 
spectrometers and at all field positions and wavelengths. The spectrometer optimized for uniform response 
(hereafter called “Offner 2”) has a lower overall image quality at all wavelengths compared with the 
spectrometer optimized primarily for distortion (“Offner 1”). The Strehl ratio for Offner 2 is -0.72 at the 
long wavelength end whereas Offner 1 has a Strehl of -0.8.  At the short wavelength end, the Strehl for 
Offner 1 varies from 0.56 to 0.99, whereas for Offner 2 the Strehl varies from 0.16 to 0.35. 

Figure 5 shows the maximum SRF variation for Offner 1, and Fig. 6 the maximum SRF variation for 
Offner 2. It can be seen that the method succeeded in reducing further the SRF variation while not causing 
a significant broadening of the response (halfwidth). A similar though more pronounced improvement can 
be seen in the variation of the SiRF for the two spectrometers, shown in figures 7, 8. We defer a more 
detailed discussion of the differences between the various curves of Figs. 5-8 until the next example. 

The second example is a Dyson spectrometer, shown in Fig. 9 in schematic form. This spectrometer also 
has a nominal resolution of 10 nm, but has a larger number of spatial pixels (1 000) of 18 pm square size, 
and an f-number of 1.4. The two differently optimized versions of the spectrometer look very similar, with 
the second having a slightly larger air gap (-10%) between lens and grating. The first version, called 
“Dyson l”, was optimized for distortion and  image quality. It  has negligible levels of smile and keystone 
(<1%), and > 78% spot energy inside the pixel for all wavelengths and field positions. However, the 
spectral and spatial response function variation is considerable. For the SRF, (Fig. lo), the difference in 
halfwidth between the two curves is estimated to be around 8%. The difference in shape between the two 
curves makes it difficult to quantify the overall effect of their differences on the accuracy of the recovered 
spectra. But for the sake of this example, we may accept that the overall difference between the two curves 
can be sufficiently characterized by the difference in their halfwidth alone. Under that assumption, we 
would be able to accept as much as  4% smile before it became the dominant source of error. Thus the high 
level of smile correction achieved in the design is partly negated by the SRF variation. A more balanced 
design would have allowed some smile in exchange for SRF variation reduction. 

Similar considerations apply for keystone and the SiRF variation, shown in Fig. 1 1. Again, the SiRF 
variation is considerable. If we characterize this variation by the integral of the S i W  outside the main pixel, 
(corresponding to the intervals 0-1 and 2-3 in the abscissa of Fig. 11, we see that this integral is 
approximately 13% (diamonds) and 28% (squares) of the total integral. The net variation (difference) 



therefore is 15%. There is no simple way to convert this variation to an equivalent keystone error, but we 
may take it to be approximately equivalent to ?4 that value (i.e., 743%) in keystone, since the keystone error 
is unidirectional, whereas the SiRF variation is similar in both directions. Thus again, although this level of 
equivalent keystone is not very high and may indeed be tolerable in a good system, it still demonstrates that 
correcting keystone to less than 1% was unnecessary, and that the performance of the system will not be 
limited by keystone but by the SiRF variation. 

The second version of the Dyson spectrometer (“Dyson 2”) was optimized for optimum uniformity of 
response. It has smile of < 2% and keystone of < 1%. The energy ensquared in the pixel for all fields and 
wavelengths is >84%. The uniformity of response is basically achieved by broadening the spots at the short 
wavelength end, but not excessively. The SRF variation for this spectrometer is shown in Fig. 12. It can be 
seen that this is a rather small variation, consistent with the level of smile of 2%. The SiRF variation is 
shown in Fig. 13. Following the rationale of the previous paragraph, the equivalent keystone error caused 
by the SiRF variation is now only about 3%, which is consistent with high quality data extraction. 

5. Conclusions 

This work has demonstrated means for optimally balancing a spectrometer design in terms of image 
quality, spectral and spatial distortion, and spectral and spatial response function variation. It has been 
shown that an optimization method based on the MTF can provide the needed uniformity of response. TWO 
examples of realistic spectrometer systems have been shown, which demonstrate that tight specifications 
can be achieved with simple spectrometer designs possessing only few degrees of freedom. 

This research was performed at the Jet Propulsion Laboratory, California Institute of Technology, under a 
contract with the National Aeronautics and Space Administration. 
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Figure Captions 

Figure 1. Schematic of an ideal spectrum produced by a pushbroom imaging spectrometer 

Figure 2. Schematic of errors in the spectrum of a non-ideal pushbroom imaging spectrometer 

Figure 3: Modeled total, scattered, and reflected upwelling radiance as a function of wavelength, mid- 
latitude summer atmosphere, 23 km visibility, 0.25 reflectance, sea level, 45' zenith angle. 

Figure 4. (a): Compact Offner spectrometer for the 1000-2500 nm range (y-z view). (b): x-z view 

Figure 5. Maximum SRF variation for Offner spectrometer 1. The two curves represent SRFs from two 
different field positions at a single wavelength. The wavelength and field positions were chosen to 
represent the worst case (maximum difference) for all wavelengths and fields. 

Figure 6 .  Maximum SRF variation for Offner spectrometer 2. In this case, the SRF is nearly invariant with 
field position for every wavelength. 

Figure 7. Maximum spatial response function variation, Offner spectrometer 1. The two curves represent 
SiRFs for two different wavelengths at a single field position. The wavelengths and field position were 
chosen to represent the worst case (maximum difference) for all wavelengths and fields. 

Figure 8. Maximum spatial response function Variation, Offner spectrometer 2. 

Figure 9. (a): Compact Dyson spectrometer example, y-z view. An additional small cemented block of 
fused silica is shown at the input, in order to allow some degrees of freedom for design optimization. A 
small gap was allowed between the exit flat silica face and the image plane. (b): Dyson spectrometer 
example, x-z view. The slit and its image are nearly coincident. 

Figure 10. Maximum SRF variation, Dyson spectrometer 1. 

Figure 1 1. Maximum SRF variation, Dyson spectrometer 2. 

Figure 12. Maximum spatial response function variation, Dyson spectrometer 1. 

Figure 13. Maximum spatial response function variation, Dyson spectrometer 2. 
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